

Real-time Monitoring and Forecast Support for DYNAMO

(Challenges in forecasting the MJO)

Augustin Vintzileos

University of Maryland – ESSIC/CICS-MD

Jon Gottschalck

NOAA/NCEP/CPC

OUTLINE...

- Reminder of the importance of forecasting at the interface between weather and climate
- The DYNAMO campaign
- The NCEP/ESSIC monitoring and forecasting support
- Forecast challenges during DYNAMO:
 - Confronting the atmospheric model to DYNAMO observations
 - Coupled versus uncoupled forecasts at subseasonal time scales
 - Confronting the oceanic model to DYNAMO observations
- Conclusions

Tropical Subseasonal Variability Weather forecasting Modulation of probability of formation of Tropical Cyclones Extreme precipitation events in the western CONUS

Week 2 - Week 4

Climate forecasting

Affecting predictability of ENSO

Modulating amplitude of ENSO

Day 0 - Day 7

Season 1 - Year 1

Forecasting ENSO with the NASA model

Observed intraseasonal activity modified the forecast from La Nina to neutral in just one month

(Vintzileos et al., 2005)

EL NIÑO/SOUTHERN OSCILLATION (ENSO)
DIAGNOSTIC DISCUSSION
issued by
CLIMATE PREDICTION CENTER/NCEP/NWS
and the International Research Institute for
Climate and Society
6 September 2012

ENSO Alert System Status: El Niño Watch

EL NIÑO/SOUTHERN OSCILLATION (ENSO)
DIAGNOSTIC DISCUSSION
issued by
CLIMATE PREDICTION CENTER/NCEP/NWS
and the International Research Institute for
Climate and Society

8 November 2012

ENSO Alert System Status: Not Active

Status of the MJO in August – September 2012

In early September
2012 the Forecaster
was facing a
collapsing MJO event
over the Indian Ocean

However, a few days
later the MJO came
back roaring,
crossed the
Maritime Continent
and entered the
western Pacific:

Need for MJO to ENSO research!!

The DYNAMO campaign:

Observations help to better understand subseasonal variability and face forecasting challenges

DYNAMO was a lucky campaign!

Review of DYNAMO through the RMM index

October to December 2011

January to March 2012

Kelvin, Rossby and MJO modes during DYNAMO

DYNAMO Radiosondes: Relative humidity

DYNAMO data help to understand the physics of the MJO

Lagged correlations: -RMM2 index (MJO in the Indian Ocean) vs. DYNAMO OBS. (RH and Wind) at Gan Island

Observations are indicative of a moisture recharge process as e.g. in Benedict and Randall (2007)

From NCEP to DYNAMO to NCEP

CPO funded the Climate Prediction Center and the University of Maryland/ESSIC to provide monitoring and forecast support to DYNAMO

...and to evaluate the NCEP models during DYNAMO

Review of CPC-GTH DYNAMO Outlooks (forecaster team)

Review of DYNAMO Outlooks: Heidke Skill Score

Time series of Week-1 and Week-2

Spatial map of Week-1 and Week-2

Confronting NCEP models to DYNAMO observations

Forecast of Anomalous OLR (GFS) for the October DYNAMO MJO event

Week 1

Forecast

Week 2

Verification

Forecast of Anomalous OLR (GFS) for the November DYNAMO MJO

Verification

Decoupling of the dynamics and thermodynamics in the GFS

Coupled versus uncoupled forecasts during DYNAMO

RMM1 (cont.) and RMM2 (dash) forecast skill for CFS (blue) and GFS (red)

Oceanic forecasts during DYNAMO

Synopsis of DYNAMO moorings D1 and D2 (courtesy Ren-Chieh Lien)

Correlation between observed and CFS forecast Temperature fields

DYNAMO subsurface data were not sent to the GTS

Very important drop in skill at the depth of the mixed layer – may affect forecast for > week 2

Summary and conclusions:

- NCEP and ESSIC provided real-time monitoring and forecast support to the DYNAMO campaign
- The team of forecasters issued skilful Week-1 and Week-2 outlooks of specifically tailored products
- In the GFS model we noted a fast decoupling between the dynamics and thermodynamics of the MJO hampering the eastward propagation of large scale convection
- There are times when convection and SST are evolving in a coherent way. During these times the coupled CFS presents a better skill than the uncoupled GFS.
- The ocean model presents a very fast drop of forecast skill at the base of the mixed layer with possible impacts to the forecast of SST for Week-3 and Week-4

Work to follow:

- Systematic investigation of the capacity of different models to represent the individual physical sources of subseasonal predictability i.e., Kelvin, Rossby and MJO modes. Research on optimal multi-model consolidation.
- The success of the team of forecasters indicates that many improvements can be made in the models:
 - Investigate reasons for the de-coupling between thermodynamics and dynamics in the GFS
 - Investigate predictability of SST at Week-3 and Week-4 and examine the ocean mixed layer as source of errors.
- Use the finding to enhance forecast skill of the Global Tropics Hazards and Benefits Outlook (GTH) tool. Extend the GTH to Week-3 and Week-4.

Example of GTH Outlook issued October 16th: Tropical Cyclone Sandy

Questions?

Augustin.Vintzileos@noaa.gov

200 hPa Relative Humidity at Gan: DYNAMO (blue) and GFS at fcst=12h (red)

WH04 MJO Index Forecast Skill

